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A Loss-of-Function Mutation in the Endothelin-
Converting Enzyme 1 (ECE-1) Associated with
Hirschsprung Disease, Cardiac Defects, and
Autonomic Dysfunction

To the Editor:
Hirschsprung disease (HSCR [MIM 142623]) is a con-
genital disorder characterized by an absence of enteric
ganglia over various lengths of the bowel, leading to
functional obstruction and resulting in life-threatening
bowel distension shortly after birth. The incidence is 1
in 5,000 live births. In ∼80% of cases, the rectosigmoid
colon is the only part affected, whereas in 15%–20%
of cases, the aganglionosis extends to the ileocecal junc-
tion. In a small percentage of cases, the entire small
bowel and colon are aganglionic, and in some rare cases,
so-called skip-lesions occur, in which ganglionic and
aganglionic bowel segments alternate.

HSCR is considered to be genetically heterogeneous
(Edery et al. 1994; Puffenberger et al. 1994; Romeo et
al. 1994; Angrist et al. 1996; Edery et al. 1996; Hofstra
et al. 1996; Salomon et al. 1996; Pingault et al. 1998)
and even polygenic (Puffenberger et al. 1994; Angrist et
al. 1996; Salomon et al. 1996; Bolk et al. 1997). Mu-
tations in five genes, RET (Edery et al. 1994; Romeo et
al. 1994), GDNF (Angrist et al. 1996; Salomon et al.
1996), EDNRB (Puffenberger et al. 1994), EDN3 (Ed-
ery et al. 1996, Hofstra et al. 1996), and SOX10 (Pin-
gault et al. 1998) have been shown to give rise, sepa-
rately or in combination (Angrist et al. 1996; Salomon
et al. 1996), to HSCR. They account for 60%–70% of
the familial cases and 10%–30% of the sporadic cases
(R. M. W. Hofstra, unpublished data). Conceivably, mu-
tations in other genes that might be part of the signalling
pathways to which these proteins belong may also lead
to the HSCR phenotype. Here we describe the involve-
ment of one such gene, the gene encoding the endothelin-
converting enzyme I. This enzyme, ECE-1, is involved
in the proteolytic processing of big endothelin 1, 2, and
3, encoded by genes EDN1, EDN2, and EDN3, to the
biologically active peptides, endothelins ET1, ET2, and
ET3, respectively.

For the purpose of the present paper, it is important
to summarize the phenotypes of Edn1, Edn3, and Ece1
knockout mice. In Edn1�/� mice, blood pressure is mildly
but significantly elevated, whereas Edn1�/� mice are
characterized by abnormal development of the pharyn-
geal arches, cleft palate, and small mandibula; abnor-
malities in the outflow tract of the heart; and abnormal
thymus and thyroids (Kurihara et al. 1994, 1995). Sim-
ilar abnormalities are also seen in the human DiGeorge
syndrome (MIM 188400). Genetically, however, these
are unrelated, as EDN1 is located on the short arm of
chromosome 6, whereas the locus for DiGeorge syn-
drome is mapped to the long arm of chromosome 22.
Edn1�/� mice die shortly after birth (within hours).
Edn3�/� mice are normal, whereas Edn3�/� mice die
within a few weeks after birth and have pigment anom-
alies and aganglionosis in the distal colon (Baynash et
al. 1994). Similar abnormalities are seen in the human
Shah-Waardenburg syndrome (MIM 277580) (Edery et
al. 1996; Hofstra et al. 1996). Ece1�/� mice are normal,
whereas Ece1�/� mice exhibit neonatal lethality due to
craniofacial and cardiac defects identical to those seen
in Edn1�/� mice. In addition, Ece1�/� newborns lack
enteric ganglia in the terminal colon (Yanagisawa et al.
1998). Thus, Ece1 knockout mice seem to present a
combination of features characteristic for the Edn1 and
Edn3 knockout mice.

These observations prompted us to scan the human
ECE-1 gene (Valdenaire et al. 1995) for mutations in a
patient with skip-lesions HSCR, cardiac defects (ductus
arteriosus, small subaortic ventricular septal defect, and
small atrial-septal defect), craniofacial abnormalities
(cupped ears: immature, and posteriorly rotated; and
small nose with a high bridge and bulbous tip), and other
dysmorphic features (tapered fingers with hyperconvex
nails; a single left palmar crease; contractures at the DIP
joints of the thumbs; PIP joints of the fingers, bilaterally;
and micropenis) and autonomic dysfunction (episodes
of severe agitation in association with significant tachy-
cardia, hypertension, and core temperatures as high as
40.5�C; and status epilepticus). The patient had a normal
karyotype without a 22q11 deletion.

We screened all 19 exons of the gene, using denaturing
gradient-gel electrophoresis (DGGE) (GenBank acces-
sion numbers: cDNA sequence, Z35307; exon and in-
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Figure 1 DNA analysis. a, DGGE patterns of exon 19 of ECE-1. A heterozygous variant can be seen in lane 1. Four normal controls
are shown in lanes 2–5. Sequence analysis of b, the normal ECE-1 exon 19 PCR product and c, the exon 19 PCR product of the patient
described. The PCR primers and conditions and DGGE conditions are available upon request.

tron boundaries, X91922–91939). For DGGE analysis,
a 9% PAA gel (acrylamide-to-bisacrylamide, 37.5:1)
containing a 40%–80% UF (100% M urea andUF � 7
40% deionized formamide) was used. Electrophoresis
was performed in 0.5# TAE ( mM Tris,1 # TAE � 40
HAC pH 8.0; 20 mM NaAc; 1 mM Na EDTA) at 11
V/cm and 58�C for 18 h. An aberrant DGGE pattern
was detected in exon 19 (fig. 1a). For the analysis of
exon 19, the following primers were used: ECE-1/19F,
5′-ACAGTGACCCTGGCCTCTCC-3′, and ECE-1/19R,
5′-(40-bp GC clamp)TCTCGTCCTCAGCCCCTTCC-
3′. The aberrant PCR products were purified and se-
quenced. A heterozygous CrT transition, resulting in
the substitution of cysteine for arginine at 742, was de-
tected (fig. 1b). Unfortunately, the patient’s parents were
not available for testing. In 100 control individuals, this
mutation was never found. Furthermore, no ECE-1 mu-
tations were found in a further 110 HSCR patients
screened. None of them, however, had the phenotype of
the described patient.

Amino acid position 742 is in the vicinity of the active
site of ECE-1 (Valdenaire et al. 1995). The observed
mutation results in the replacement of a basic amino
acid by a neutral polar amino acid. Moreover, this might

result in the formation of an alternative disulfide bridge.
In humans, three ECE-1 isoforms are generated from the
same gene (Schweizer et al. 1997). They differ only in
their first N-terminal amino acid residues; they share the
same extracellular domain (which includes the enzyme
active site) and cleave big endothelins with similar
efficiencies.

To investigate the functional consequences of the mu-
tation on ECE-1 activity, we introduced it into the hu-
man ECE-1b isoform (Valdenaire et al. 1995; Schweizer
et al. 1997). A PCR approach was used to construct the
mutant (Cys742). Fidelity of the mutants was checked
by sequencing. Wild-type and mutant proteins were pro-
duced by transient expression of the above-described
expression constructs in Chinese hamster ovary cells
(CHO-K1). ECE-1 activity was measured on cell
membrane preparations by means of a specific radio-
immunoassay and quantitative immunoblotting as de-
scribed elsewhere (Schweizer et al. 1997). The specific
ECE-1 activity was calculated as nanomoles of
endothelin 1 produced per minute per milligram of ex-
pressed ECE-1 (nM/min�1/mg�1). A more detailed pro-
tocol of this functional assay can be found elsewhere
(Löffler and Maire 1994; Schweizer et al. 1997).
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An example of a western blot used for quantitative
immunoblotting is shown in figure 2a. The outcome of
the radioimmunoassay is show in figure 2b. The specific
activity measured in three independent transfections was
for the wild-type ECE-1b, nM/min�1/mg�1314 � 44
(mean � SD), and for the Arg742Cys mutant ECE-1b,

nM/min�1/mg�1 (mean � SD). Thus, the ac-14.7 � 9.8
tivity of the mutant ECE-1 is only 4.7% of that of wild-
type ECE-1. To determine whether this effect was due
to this specific amino acid substitution or more generally
to an effect on the catalytic site, we also generated an
Arg742Ala mutant. This Arg742Ala mutant ECE-1 had
a specific activity of nM/min�1/mg�1 (mean12.4 � 0.3
� SD), demonstrating that the position of the mutation
is more important than its specific nature.

In addition, from a developmental point of view, there
are arguments suggesting that the phenotype described
might be caused by reduced activity of the ECE-1 en-
zyme. The vertebrate enteric nervous system is large and
independent. It develops from cells that migrate to the
gut from three regions of the neural crest. The cells from
the vagal neural crest colonize the enteric bowel below
the rostral foregut, the sacral neural crest cells colonize
only the postumbilical bowel, and the cells of the truncal
neural crest colonize only the rostral foregut primordia
of the esophagus and the cardiac stomach (Gershon
1997). Vagal neural crest cells are also crucial for the
development of the outflow tract of the heart, thymus,
and parathyroid glands. Neural crest cells from more
anterior hindbrain regions play a key role in the pat-
terning of the pharyngeal arches and their derivatives.
The phenotypes in spontaneous and induced Edn3,
EdnrB, and Ece1 mutant mice are all related to the de-
velopmental fate of hindbrain neural crest cells and to
the formation of melanocytes, also derived from the neu-
ral crest.

Further evidence that reduced levels of ET3 might con-
tribute to the development of HSCR comes from ex-
pression studies of this gene in both ganglionic and agan-
glionic colon segments of HSCR patients and control
individuals. Both aganglionic colon and ganglionic colon
of HSCR patients show reduced levels of EDN3 tran-
scripts regardless of the mutation status of genes known
to be involved in HSCR (S. E. Kenny, R. M. W. Hofstra,
Y. Wu, C. H. C. M. Buys, C. Vaillant, D. A. Lloyd, and
D. H. Edgar, unpublished data). This suggests that a low
level of ET3 might be a condition for the development
of HSCR.

In view of (1) the function of ECE-1 during murine
development suggested by the mouse models, (2) the
overlap in phenotypic features of these mouse models
and our patient, and (3) the functional consequences of
the mutation on the enzyme activity, we propose that
the Arg742Cys mutation caused or at least contributed

to the phenotype of our patient by producing reduced
levels of ET1 and ET3.
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cells with Lipofectamine (Life Technologies) according to the manufacturer recommendations. Confluent cells in 100 mm plates were harvested
60 h after transfection, and membranes were prepared. Protein levels of expressed ECE-1 were measured on membranes by quantitative
immunoblotting as described (Schweizer et al. 1997). Western blot of one set of transfections is shown: lane 1, nontransfected cells; lane 2,
wild-type ECE-1b; lane 3, R742C mutant; lane 4, R742A. b, ECE-1 activity was assessed by means of a specific radioimmunoassay as described
elsewhere (Schweizer et al. 1997). The results shown are the mean � SD of at least three independent experiments, in nanomoles of produced
ET-1 per minute per milligram of ECE-1 protein. C � nontransfected cells; WT � wild-type ECE-1b.
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